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We show that decimation transformations applied to high-q Potts models result 
in non-Gibbsian measures even for temperatures higher than the transition 
temperature. We also show that majority transformations applied to the Ising 
model in a very strong field at low temperatures produce non-Gibbsian 
measures. This shows that pathological behavior of renormalization-group 
transformations is even more widespread than previous examples already 
suggested. 
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1. I N T R O D U C T I O N  

In  refs. 29 and  30 it was  s h o w n  h o w  va r ious  r e n o r m a l i z a t i o n - g r o u p  ( R G )  
m a p s  ac t ing  on  G i b b s  measu res  p r o d u c e  n o n - G i b b s i a n  measures .  In  

physicis ts '  l anguage ,  this m e a n s  that  a " r e n o r m a l i z e d  H a m i l t o n i a n "  c a n n o t  

be defined. T h e  examples  p resen ted  there  were  all va l id  at  low t empera tu re s  

and  mos t ly  e i ther  in o r  close to the coexis tence  region.  T h e  under ly ing  
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mechanism--pointed out first by Griffiths, Pearce, and Israel tin2' 13'2~ 
the fact that for the constraints imposed by particular choices of block-spin 
configurations, the resulting system exhibits a first-order phase transition. 
For this to happen, it was expected that the original system should be 
itself at or in the vicinity of a phase transition. Block-average transfor- 
mations, however, provided a counterexample to this belief, in that they 
lead to non-Gibbsianness for arbitrary values of the magnetic field (at low 
temperatures).~3~ 

Since this work was done, there was a sort of "damage-control" move- 
ment where various transformations were shown, or argued, to preserve 
Gibbsianness, or to restore it after sufficiently many iterations. These include 
sufficiently sparse (or sufficiently often iterated) decimations in nonzero 
field, ~26~ possibly combined with other block-spin transformations, ~27) 
decimated projections on a hyperplane, ~24) and majority,~2~ ) block-average, ~) 
and decimation"~) transformations in the (low-temperature) vicinity of the 
critical point of the two-dimensional Ising model. The case of decimated 
projections ~24) has the peculiarity that the Gibbsianness is restored in 
a measure-dependent fashion: the renormalized Hamiltonians for the " + "  
and the " - "  Gibbs states are different, and there is no renormalized 
Hamiltonian for nontrivial mixtures of these states. On the other hand, 
some studies of the 2d critical Ising model 12~' ~' 3~) asserting Gibbsianness of 
some renormalized measures at or in the vicinity of the critical point are 
highly suggestive, but not conclusive. Indeed, refs. 21 and 31 consider only 
(judiciously) selected block-spin configurations, while ref. 1 adds a further 
argument due to Cassandro and Gallavotti stating that the lack of phase 
transition for the restricted system with block-average spin equal to zero 
implies Gibbsianness. This argument, however, is still in need of some 
increased degree of rigor, as one can construct examples for which the 
original formal argument leads to false conclusions (A. C. D. van Enter, 
unpublished). 

In this paper we present two new examples of non-Gibbsianness that 
show the ubiquity of this phenomenon of lack of a renormalized 
Hamiltonian: (1) We show another example of non-Gibbsianness in the 
strong-field region, this time for majority-rule transformations of the Ising 
model. (2) For the high-q Potts model we show that the decimated 
measure can be non-Gibbsian for a range of temperature above the tran- 
sition temperature. The first example together with the example of block- 
averaging c3~ show that non-Gibbsianness can appear deep within the 
region of strong t26' ~) complete analyticity t~6~, contradicting the intuition 
explained in refs. 26 and 1. On the other hand, the second example, besides 
being the first proven example of a "high-temperature" pathology, shows 
that the condition of strong complete analyticity may be violated above the 
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transition temperature, answering a question posed by Roland Dobrushin. 
However, it seems plausible that the weaker version of complete analyticity 
- -where  only sufficiently regular volumes are involved--applies. This 
weaker version, discussed, for example, in refs. 26 and 1, is the one which 
in general seems suitable in the vicinity of first-order transitions. 

We mention that Griffiths and Pearce ~2"~31 and also Hasenfratz and 
Hasenfratz t~7~ presented arguments suggesting the existence of"peculiarities" 
for majority-rule transformations at some precisely tuned (high) values of 
the magnetic field. Our discussion shows that the situation is even worse 
than they expected because in fact the pathologies happen for arbitrarily 
large values of the field. 

The present examples, in our opinion, support the point of view that 
the non-Gibbsianness of renormalized measures is in some sense "typical" 
and should not be dismissed as exceptional. On the other hand, they make 
even more apparent the need for a systematic study of the consequences of 
this non-Gibbsianness for computational schemes (renormalization-group 
calculations, image-processing algorithms) which assume the existence of a 
renormalized Hamiltonian in the usual sense (see ref. 28 for a pioneer study 
in this direction). 

2. B A S I C  S E T - U P  

We consider finite-spin systems in the lattice 5 ~ = ;~d, that is, a con- 
figuration space of the form f2=(g20) z '  with the single-spin space [2 o 
consisting of a finite set of (integer) numbers. We consider the usual struc- 
tures: All subsets of I2o are declared to be open (discrete topology) and 
measurable (discrete a-algebra), and the normalized counting measure is 
chosen as the a priori probability measure on the single-spin space. The 
space f2 is endowed with the corresponding product structures. In par- 
ticular, the product of normalized counting measures acts as an a priori 
probability measure on f2--the h~teraction-fi'ee measure--which we denote 
po. We shall use a subscript A when referring to analogous objects for a 
subset A c ga: for instance, g-2~ = (g2o)A; if a ~ I2, aA = (ax)x~a, etc. On the 
other hand, for a, co e 12 we shall denote by aao9 the configuration equal to 
a on sites in A and to co outside. 

We point out that, in contrast with the single-spin case, not all subsets 
of f2 are open, nor are all functions on g2 continuous. In fact, a function 
f : / 2  ~ R is continuous at a if and only if 

lim sup I f ( a ) - f ( c o ) l  = 0  (2.1) 

that is, a change of a in faraway sites has little effect on the value of f .  That 
is why continuous functions are, in the present setting, often also called 
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quasilocal functions. Here and in the sequel we use the symbol " p "  to 
indicate convergence in the van Hove sense. Also, we point out that the 
symbol "1" r' will also be used to indicate the cardinality of a set. 

Each spin model is usually defined in terms of an interaction, that is, 
a family q~ = (q~)A = ~. A finite of functions ~A: /2 ~ I/~ (contribution of 
the spins in A to the interaction energy) which are continuous and depend 
only on the spins in A. These interactions determine the finite-volume 
Hamiltonians 

HA(aA 109) = ~ #A(aA09) (2.2) 
f i n i t e  A ~ --q' 
A ~ A # O  

and the Boltzmann-Gibbs weights 

ZtA(g109)=(Norm.)-l f g(tr~09)exp[--HA(trA109)]l~~ (2.3) 

In order not to run into problems with the definition of HA and the 
Boltzmann weights, the usual assumption is that the interactions are 
absolutely summable, i.e., supx ~A~x flea If o~ < ~ .  

The set of Boltzmann weights n(-I-) form a regular system of condi- 
tional probabilities in the sense that they satisfy the "consistency property" 

zt~(. Io9) = f rtA(-Io5) ~(dch 109) (2.4) 

for a// configurations co ~/2 and all volumes A c,~.  For this reason, they 
constitute a system of regular conditional probabilities (for events on finite 
volumes conditioned on the configurations outside). Moreover, these are 
conditional probabilities defined for a// configurations co, rather than 
almost all, as is usually the case in probability theory. To emphasize this 
fact, the term specification has been coined. 

Specifications defined as in (2.3) are called Gibbsian specifications, and 
they model finite-volume equilibrium for the system in question. The corre- 
sponding infinite-volume equilibrium is described by the corresponding 
Gibbs measures, which are those measures /1 on /2 whose conditional 
probabilities are given by the specification 

/1(. ) = f hA(' Io9) lt(d09) (2.5) 

In this case one also says that the measure/~ is consistent with the specifica- 
tion n. More generally, a probability measure is Gibbsian if it is consistent 
with some Gibbsian specification. 
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There is an important necessary condition of Gibbsianness: Gibbsian 
specifications are necessarily continuous-- that  is, quasilocal--with respect 
to the boundary conditions. That is [cf. (2.1)], for each finite A c 7/d and 
any a e I2, 

lim sup InA(.la)--nt( .Ico)l=O (2.6) 
A .." .LP O J : O ~ A = O A  

with the limit understood in the weak sense (i.e., it holds, possibly at dif- 
ferent rates, when " ."  is replaced by any continuous function depending 
only on finitely many spins). A measure whose conditional probabilities 
violate this quasilocality requirement cannot be Gibbsian (see ref. 30 for a 
more detailed discussion of this issue). 

In particular it is of interest to analyze the Gibbsianness of renor- 
malized measures. In its general form, a renormalization transformation is a 
map between probability measures defined by a probability kernel (see ref. 
30 for the relevant definitions). In this paper we consider only deterministic 
real-space renormalization transformations. These are defined in the follow- 
ing fashion. One considers a basic "block" Bo--in this paper a cube of 
linear size N - - a n d  paves Z d with its translates {Bx: x e NT_ d} (from now on, 
whenever we speak about "blocks" we shall mean one of the blocks of a 
fixed paving). For each block one takes a transformation that associates to 
each configuration in the block Bx a spin value representing an "effective" 
block spin. It is mathematically convenient to think of this transformation 
as going from Z a to Z d, rather than to a "thinned" 7/a, hence we consider 
maps Tx: g2nx~ g2o, defined for each xe7/a, and the maps T: g2---, g2 with 
[T(co)]~= TNx(Ws^,x) constructed from it. Each such map T defines a 
renormalization transformation on measures that maps every measure/~ on 
g2 into a new measure T/~, also on g2, introduced in a natural manner by 
its action on any measurable function g, namely, 

I g(co') Tp(dw') = f g(T(og)) p(dog) (2.7) 

(As customary, we shall try to use primed variables for the renormalized 
objects). The two transformations of interest here are odd-block majority- 
rule transformations for the Ising model (ax = + 1, - 1  ), 

and decimation for the Potts model, 

Tx(aBx) = a x  (2.9) 
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3. N O N - G I B B S l A N N E S S  FOR MAJORITY-RULE M A P S  OF 
ISING MODELS AT HIGH M A G N E T I C  FIELD 

We consider the Ising model in Z d, that is, spins ax E { -  I, 1 } with 
interaction 

f -hax if A = { x }  

~a(a)=~--Jaxay if A={x,y} withx, y nearest neighbors (3.1) 

Lo otherwise 

with J >  0. The result is the following: 

T h e o r e m  3.1 Consider the majority-rule transformation Tz. acting 
on blocks of linear size 2L + 1, L t> 2. Let/tp./, denote the unique Gibbs 
measure for the Ising model at inverse temperature fl and magnetic field 
h > 0. Then there exists a flL such that for fl > flL and Ihl > J/L the measure 
TL/~a,I, is not consistent with any quasilocal specification; in particular, it 
is not a Gibbs measure for any uniformly convergent interaction. 

For the proof we essentially follow the scheme of ref. 30, Section 4.2: 
We determine a suitable special configuration CO'spe:ia~ yielding a constrained 
system with several phases. Let us, for concreteness, consider h > 0. In this 
case we choose CO'specia~ equal to the a l l - " - "  configuration, so as to have a 
constraint acting against the magnetic field. We have to prove two things: 

Claim 3.2. The resulting constrained system of internal spins has 
more than one phase. 

Claim 3.3. The different phases of the constrained system can be 
selected by imposing suitable block-spin boundary conditions over a ring- 
like region of finite width (i.e., by replacing, for this boundary region, 
the above constraint stemming from co'~c~ by a different, suitably chosen 
constraint). 

Together these claims imply that by changing block spins arbitrarily 
far away one changes the phase of the internal spins, which in turns changes 
the value of block-spin averages close to the origin. For instance, it 
modifies the (average) value of the block spin at the origin and that of one 
of its nearest neighbors (when these spins are "unfixed"; this part of the 
argument is almost identical to the corresponding argument for block- 
averaging transformations; see Step 3 in ref. 30, pp. 1008-1009). This 
modification takes place despite the fact that the intermediate block spins 
are fixed in the configuration O.)tspecial . This means that the direct influence 
of faraway block spins does not decrease with the distance, hence the 
renormalized measure cannot be Gibbsian. 
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We emphasize that only block spins on an annulus offinite width are 
invoked in Claim 3.3; the block-spin configurations can be arbitrarily 
chosen outside it. This implies that there is an "essential" jump in averages 
of renormalized observables, in which the extremal values of it can be 
reached via sequences chosen from "large" (nonzero-measure) sets of 
boundary configurations, obtained by modifying O)~special arbitrarily far 
away. Mathematically, we are proving that some conditional probabilities 
of TLpa.I, are essentially discontinuous at o)'sr~cial" They exhibit a jump 
that cannot be removed by redefining them on a set of /~p.h-measure 
zero around o)'sp~cia t. Hence, no other realization of such conditional 
probabilities will be free of this discontinuity. Of course, one may attempt 
to do without C0'specia~; after all, conditional probabilities need to be defined 
only TLpa. h-almost everywhere. This is a more involved issue, about which 
we shall briefly comment in Section 5. The finiteness of the annulus in 
Claim 3.3 is needed for a second reason: A priori we only know that the 
conditional probabilities of Tt.pp. h are some Gibbs states of the constrained 
system of internal spins [see the discussion of Step 0 (esp. pp. 987-990) in 
ref. 30], but we do not know which ones. Therefore, the statements have 
to be proved for all possible such Gibbs states, which is equivalent (ref. 10, 
Theorem 7.12) to proving them for arbitrary boundary conditions (see ref. 
30, p. 991, for a more complete discussion of these issues). 

We discuss the proof of the claims above only in the particular case of 
d = 2  and L = 2  (5 x 5-blocks). The other cases are analogous, but they 
require a more complicated accounting of ground states that would 
obscure the argument. 

3.1. Proof  of Cla im 3.2 

We start by analyzing the ground-state configurations of the con- 
strained system. These configurations must satisfy the constraint of keeping 
each block with a majority of " - "  while maximizing the number of spins 
parallel to the field and minimizing the number of " + " - " - "  pairs (broken 
bonds). This clearly yields, inside 5 x 5 blocks and for h >J ,  the eight 
ground-state configurations shown in Fig. 1. Any overall ground-state 
configuration combines such blocks without any interruption. It is easy 
to convince oneself that there is an infinite number of such ground-state 
configurations and that this set splits into four classes consisting of confi- 
gurations with either horizontal or vertical alternating strips as depicted in 
Fig. 2. Within each strip a primed block always neighbors an unprimed one 
and one has the freedom to start, in each strip independently of the other 
strips, with the primed or unprimed one. This yields two possible arrange- 
ments [mapped one into another by a shift by one (block) lattice spacing] 
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I . . . . . . . . . .  
+++++r +u . . . . .  + + + + +  

I + + + + +  I + + + + + 1  
1 1' 2 2' 

+ + _ _ _  I--+-777  
+ +  . . . . . .  

i____++++ I 
3 3' 4 4' 

Fig. 1. Configurattons minimizing the energy within a 5 • 5-block for the Ising model with 
negative block magnetization in the regime h > J. 

for each strip a n d  leads to the degeneracy  of  the order  2 number of strips of  each 

of these classes of  g round- s t a t e  conf igura t ions .  
We assert tha t  each class of g round - s t a t e  conf igura t ions  gives rise to 

a different l ow- tempera tu re  G i b b s  measure .  In  such measures  on ly  the 
ident i ty  of  the class is k e p t - - t h e  per iodic  long- range  order  be tween  pr imed  
and  u n p r i m e d  blocks  present  in par t i cu la r  g round- s t a t e  conf igura t ions  is 
no t  conserved  at n o n v a n i s h i n g  tempera tures ,  as it is, effectively, a one-  
d imens iona l  order.  The  p roof  of  this asser t ion,  f rom which Cla im 3.2 follows, 
can  be done  in (at  least) two different ways. 

1' 1 1' 1 1' 1 2' 2 2' 2 2' 2 
2 2' 2 2' 2 2' 1' 1 1' 1 1' 1 
I 1' 1 1' 1 1' 2 2' 2 2' 2 2' 
2' 2 2' 2 2' 2 l 1' 1 1' t I '  
1' 1 1' 1 1' 1 2' 2 2' 2 2' 2 
2' 2 2' 2 2' 2 1 1' 1 1' t 1' 

I II 

3' 4 3' 4 3 4' 4' 3 4 3' 4' 3 
3 4' 3 4' 3' 4 4 3' 4' 3 .1 3' 
3' 4 3' 4 3 4' 4' 3 4 3' 4' 3 
3 4 ~ 3 4' 3' 4 4 3' 4' 3 4 3 ~ 
3' 4 3' 4 3 4' 4' 3 4 3' 4' 3 
3 4' 3 4' 3' 4 4 3' 4' 3 4 3' 

III IV 

Fig. 2. Classes of ground states for the Ising model with negative block magnetization 
(5 x 5-block, h > J). Within each strip the primed blocks can be at either odd or even posi- 
tions, independent of the configuration in other strips. 
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The first one is to use chessboard estimates in the form presented in 
Theorem 18.25 of ref. 10. Indeed, by considering each block as a single-spin 
space with as many values as block configurations satisfying the constraint 
of having a majority " - "  we can map our constrained system into an 
unconstrained one with Is%l= 224 and with a certain one- and two-body 
nearest-neighbor interaction. This systems is clearly reflection-positive and 
the four classes of Fig. 2 are just the classes GI ..... G 4 of the above- 
mentioned theorem. 

One can also prove the existence of four low-temperature Gibbs states 
with the help of the generalization of Pirogov-Sinai theory due to Bricmont, 
Kuroda and Lebowitz (BKL) in ref. 3. Let us briefly review BKL theory, 
as we also will apply it later for the example of the Potts model. The central 
objects of the theory are the restricted ensembles which are families or classes 
of configurations that play a role analogous to that of the ground states in the 
standard Pirogov-Sinai theory. In the BKL version, the restricted ensembles 
have a product structure: they are characterized by their configurations on an 
elementary cube Co. More precisely, I'2c0 can be partitioned, 

s = I2~ w Go (3.2) 
a 1 

with each I2g associated to a restricted ensemble and Go containing what 
is left. By paving the lattice with translates Cx of Co with x E L~_ d, where 
L is the linear size of Co, one defines the translated cube configurations I2~. 
The ath restricted ensemble is formed by configurations whose restriction 
to each Cx is of the type s 

I2"= {a et'2: trc el2~ for all xELT/d} (3.3) 

For each restricted ensemble one considers the corresponding restricted 
partition functions in finite volumes A, 

ZR(A, coa)= ~' exp[--HA(a~[og")] (3.4) 
O A E ~aA 

with boundary conditions a~ae I2". 
To apply BKL theory, several hypotheses must be satisfied [hypotheses 

(A1)-(A5) in ref. 3 ]. First, there is the diluteness hypothesis, which basically 
means that the restricted partition functions must admit a polymer expan- 
sion from which a convergent cluster (high-temperature, Mayer) expansion 
follows. The diluteness hypothesis implies, in particular, that the restricted 
free energies 

f a  = .~ lima.,z IA I ~ log ZR(A,  co ~) (3.5) 
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exist and are independent of the choice of co"~/2 ". Second, one assumes a 
restricted-ensemble Peierls condition, i.e., that the free-energy cost of 
placing a droplet of configurations of one of the restricted ensembles inside 
a sea corresponding to another restricted ensemble be proportional to the 
surface of the droplet. An important role is played by the value r of the 
constant of proportionality. Third, the system must exhibit free-energy 
degeneracy among the restricted ensembles: 

f , = f h ,  l <~a,b<~r (3.6) 

If restricted ensembles are formed by exactly one configuration, then the 
restricted free energies are just energy densities; in that case (3.6) is the 
usual degeneracy condition of ground states. BKL also assumes the 
existence of r - I  sufficiently smooth perturbations of the interaction, 
modulated by parameters ~ = (/~ ~ ..... P r -  ~), which are degeneracy lifting in 
the sense that the perturbed restricted free energies f~', produce a phase 
diagram that obeys the Gibbs phase rule. More explicitly, the manifolds in 
~-space defined by inequalities of the form 

f~, . . . . .  f~k < f~k+,,..., f,,[ 

("manifolds of k-phase coexistence") can be homeomorphically mapped, 
for _/:z small enough, onto an ( r -k)-dimensional  hypersurface of the 
boundary of the positive r-octant in R". In particular _/:t = 0 is the only value 
for which all the restricted free energies coincide. 

Under these hypotheses, the conclusion of BKL theory is that for r 
large enough the actual phase diagram of the system is only a small pertur- 
bation of the one drawn with the restricted free energies. In particular there 
is a value 80 of the parameters for which all r phases associated to the 
respective restricted ensembles coexist. Moreover, this coexistence happens 
for 

[l_/Zo II ~ < const- e - r  (3.7) 

that is, the distance between the true maximal-coexistence point and the 
one determined via the restricted ensembles by (3.6) tends exponentially to 
zero with the Peierls constant. The typical configurations of the different 
Gibbs states are formed by an infinite sea of spins configured as in the 
corresponding restricted ensemble, with small bubbles here and there 
configured as in the other ensembles. 

It is clear how to apply BKL theory for the case of interest here: 
The restricted ensembles are the four classes I21 ..... /2 TM obtained from the 
corresponding configurations of Fig. 2 by allowing a free assignment of the 
primes. Notice that we extend the original classes of ground configurations 
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by ignoring the (fake) one-dimensional primed-unprimed order. In spite of 
the fact that restricted excitations are included, the classes keep identity 
and, in particular, the Peierls condition may be verified. For each restricted 
ensemble, the restricted partition function is (can be put in correspondence 
with) a product of partition functions for one-dimensional antiferromagnetic 
Ising models with nearest neighbor coupling - J  (the "primes" of different 
lines do not interact, and two consecutive primes or two consecutive non- 
primes along a line cost an energy 2J). The partition functions for one- 
dimensional finite-range systems have all the diluteness properties in the 
world, and the four classes have the same restricted free energy density. 
Explicitly, one can easily verify the diluteness hypothesis in the alternative 
formulation from Section 4 of ref. 3, that is, by exhibiting an exponential 
decay of truncated correlations. 

To verify the Peierls condition, one has to evaluate the ratio 

z(FI A, o") 
Q(FIA, o9 ~) (3.8) 

ZR(A, co") 

with Z(1-'IA, og') denoting the partition functions obtained by summing 
over all configurations in A having only one contour F (the union of 
blocks that differ from the minimizing ones shown in Fig. 1 equals f'). 
Using the above-mentioned effective equivalence of the restricted ensemble 
with uncoupled one-dimensional Ising models, we evaluate (up to bound- 
ary terms) the restricted partition function ZR(A, co") by (1 +e-'-/Js) I'". 
Noticing that every block in / "  is disfavored by at least the factor e-~-tsJ, we 
get the Peierls condition with the Peierls constant being at least r >/2flJ. As 
symmetry-breaking perturbations we can take fields selecting one or the 
other of the classes. BKL theory implies, therefore, that for low enough 
temperature there is a set of values for these fields (not exceeding e -2/sJ) 
at which four Gibbs states coexist which are supported on configurations 
that, except for small fluctuations, look like those of the corresponding 
restricted ensemble. Symmetry considerations imply that these coexistence 
points actually occur when all the perturbing fields vanish. 

This argument proves Claim 3.2, and constitutes the rigorous version of 
the stated breaking of the long-range order between primed and unprimed 
blocks. 

3.2. Proof  of Cla im 3.3 

We start by noticing that if volumes A as in Fig. 3 had internal-spin 
boundary configurations as in part (a) of the figure [resp. part (b)],  then 
the limit A ~ 7/2 would select the Gibbs measure corresponding to the 
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class labeled I [resp. II] in Fig. 2. This can be seen through a small 
adaptation of the usual Peierls argument: the left and right diagonals are 
"neutral" in that they do not favor any of the ground states, while the top 
and bottom favor class I over II in case (a), and conversely in case (b). 
Similarly chosen rotated volumes select classes III and IV. 

However, we are allowed to impose only block-spin configurations, 
which determine the internal spins only in a probabilistic sense. We have 

N 

+25 +25 +25 +25 

+25 +25 +25 +25 +25 +25 +25 +25 +25 +25 +25 +25 

3N 

(a) 

+25 +25 +25 +25 
-1  -1  - i  -1  

+25 t+25 

+25 +25 

+25J +25 

+ 25 J + 25 

- i  - I  - I  - I  - I  - I  - I  - I  - I  - I  --I  - I  
+25 +25 -I-25 +25 +2.5 +25 +25 +2.5 +25 +25 +2,5 +25 

(b) 

Fig. 3. Internal-spin configurations that would select the Gibbs measure corresponding to 
ground states (a) of class I (Fig. 2), (b) of class II. Numbers indicate total block magnetiza- 
tion. Note: These pictures illustrate the boundary conditions; the number of rows (lateral 
"steps") should be even and not odd as depicted here. (We thank Marek Biskup for pointing 
out this inaccuracy to us.) 
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to prove that there exist some block-spin configurations which, when 
imposed on some annulus of finite radius around A, produce with high 
probability the internal-spin configurations of Fig. 3. As the reader may 
suspect, such a configuration will be the all-"+" block-spin configuration 
for case (a) (Fig. 4a). For case (b) we shall consider the configuration of 
Fig. (4b). Let us discuss the former case; the latter is just a slightly 
modified version of it. The argument is basically a combination of Steps 
2.1-2.4 of ref. 30 (cf. p. 1005 there) and well-known probabilistic Peierls 
arguments (see, for instance, ref. 4, Section 2). 

+ + + + + + + + + + + + + + + + 

+ ,1, + + ,1, + + -t- + + ,1, + ,1, + + + 

1, ,1, ,1, ,1, + ,1, [ 

+ ,1, + ,1, + ]  

1. .1. .1. .1. [ 

+ ,1, ,1,[ 

,1,.1.[ 

.+ ,1, ,1, + ,1, ,1, 

I -I- ,1, + + + 

q- + ,1, .1. 

4 + ,1, 

],1,,1, 
+ ,1, + + ,1, + + + + + + + ,1, + + + 

1, ,1, ,1, ,1, ,1, + ,1, + ,1, ,1, ,1, ,1, ,1, ,1, ,1, ,1, 

Ca) 

1, ,1, ,1, .1. ,1, ,1, + ,1, ,1, ,1, ,1, ,1, ,1, .1. ,1, + 

+ ,1, ,1, + + ,1, 

1, ,1, + ,1, + ,1,] 

+ + + + + [ m  

+ ,1, + + ]  

4 ,1, ,1, 1 - -  

1, ,1, [ - -  

+ + + + + + 

I + + + + + ,1, 

+ + + + + 

I -t- ,1, + + 

+ + + 

],1,,1, 
+ + + + 

+ + + + 4 + + + + + + + + + + + 

(b) 

Fig. 4. Block-spin configurations that yield, with high probability, the internal-spin 
configurations of Fig. 3. 
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The precise statements require further notation. For a block B, denote 

N+(B)  = n u m b e r  of " + "  spins in B (3.9) 

For any family ), of 5 x 5-blocks we use 171 to denote the number of blocks 
in 7 (for a given configuration) and take 

~(7)  = {blocks B~7: N+(B) <25} (3.10) 

as the set of blocks of 7 with "bad" internal-spin configurations. For 
volumes V formed by a union of nonoverlapping blocks we consider the 
probability measures r~ - ( . l a )  obtained from the Ising specification with 
the additional restriction that there must be a majority o f " + "  spins within 
each block in V. In an analogous way we define the finite-volume measures 
~ l - ( . ,  a) with the blocks inside A having a majority of " - "  spins and 
those outside a majority of " + "  spins. 

We decompose now the argument yielding the proof  of Claim 3.3 into 
a sequence of rather natural observations: 

Observation 3.4. There is a unique measure /7+ consistent with 
the specification { r~ ~.+}. Likewise, for a fixed, finite union of blocks A, there 
is a unique measure/7 +l-,, consistent with the specification { n~,. " +i-.,}. 

Indeed, the uniqueness of/~ § (at all temperatures) follows from the 
ferromagnetic nature of the model and the uniqueness of the ground state: 
The latter implies via Griffiths II inequality, (~) that for each temperature 
the expectations with " + "  boundary conditions are equal to those with 
" - "  boundary conditions. This implies uniqueness by FKG-type 
arguments, c4). The uniqueness of /7+ implies that of fi+l-, ,  because the 
distributions {r2 jr +.l-'} are only a finite-volume modification of the kernels 
{~+ r } (ref. 10, Section 7.4). 

Observat ion 3.5. There exists a constant c such that, for h > J/2, 

~-~I-,,(N+(B) = 25 [ - ) >~ 1 - ce -#h (3.11) 

for any block B outside A. 

This is just the fact that, for h > J/2, a block with less than 25 spins 
" + "  (but with at least 13 pluses) has, under minus boundary conditions, 
an energy cost of least flh. The constant c is just the number of configura- 
tions of such a block, c = 2 - '4 -  l. 
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O b s e r v a t i o n  3.6. For each ,~>0 there exists a constant ]~ such 
that for fl >/~ and/ i  > J/2 

+M-,,(l~(y)l > a I~,1) ~< e',~ (3.12) 

with e < 1, for all families y of 5 x 5-blocks located outside A. 

This is proven via the well-known technique of the Bernstein, or 
"exponential Chebyshev," inequality/2' 19~ To simplify the notation, let us 
define a block-random variable 

XB= {10 if N+(B) < 25 
otherwise (3.13 ) 

We then have 

(In the first inequality, I[A] is the indicator function of the event A). By 
FKG inequalities and Observation 3.5, 

B E  }, J / B e y  

~< [e-~(1 +ce-lU'e)]lrl 

~---8 I~'1 (3.15) 

Observat ion 3.7 There exists a constant f12 such that for fl>[]2 
and h > J/2 the blocks close to the origin have/2+l-<probabil i ty  larger 
than 1/2 to be in the configuration of the ground states of class I (Fig. 2). 

This follows from the preceding observation by a probabilistic Peierls 
argument. Take y = aA, that is, equal to the blocks immediately outside A, 
and ~ = 1/18. Then by Observation 3.6 there is a very large probability that 
the configuration on 0A looks like that in Fig. 3a except for a small frac- 
tion of "bad" 'blocks that does not exceed one-third of the blocks in the 
smallest side of A (because we chose ~ = 1/18; see dimensions in Fig. 3). In 
this situation, a standard Peierls argument, as sketched at the beginning of 
the proof of the claim, yields the above observation. The contribution due 
to configurations of aA with a larger fraction of "bad" blocks is bounded 
by e la~l, which tends to zero as A grows. 
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Observation 3.8.  For  any configuration a one has 

lim r~ ~i-"(  �9 I a) =/2 + i-"( �9 ) (3.16) 
V t  Z 2 

(in the weak sense). 

Indeed, every accumulation point of sequences (nets) ~+l-,(v,, "I al"~) is 
a Gibbs state of the specification { ~ t - A }  (it is easy to see that such 
accumulation points must satisfy the corresponding DLR equations), but  
by Observation 3.4 there is only one such a Gibbs state, namely/2+t-A. 

The last observation implies that we can replace/2 + i-,, by r~ ~t-A(. I a) 
in Observation 3.7. This proves Claim 3.3. 

The proof  of Theorem 3.1 can now be completed almost identically to 
the proof  for block-average transformations in ref. 30: Claims 3.2 and 3.3 
constitute Steps 1 and 2 respectively, and one can then proceed to Step 3 
("unfixing" of the block spins close to the origin) as in pp. 1008-1009 of ref. 
30. The conclusion is that there exists a (van Hove)  sequence of volumes 
A ,~ 7/d (those shown in Fig. 3) and open sets of (block-spin) configura- 
tions JI/"+ ( " + "  on an annulus surrounding A and arbitrary otherwise) 
and ~+"_ ("thickened version of those of Fig. 4b: " - "  immediately above 
and below A, then an annulus of " + "  and arbitrary farther out), such that 
there exists a constant c > 0, independent of A, with 

I E ~ . p , ( ~  + ~'.., I { a'x} x ~o. ~ , ) ( - ~ ' )  

-g,-~.p.~(~r~ + cr'~, I {ald x~o,~,)(-%0')1 > c  (3.17) 

for every r/' E Jt/"+ and 0' ~ ~4r'_. We have denoted e~ = (0, 1 ) and o9] r/' is the 
configuration equal to o9' inside A and to r/' otherwise. That  is, TU~p, h has 
a conditional probability which is essentially discontinuous at co'~p,~i, ~ = " - " .  
In particular, it cannot  be Gibbsian. 

4. NON-GIBBSIANNESS OF DECIMATED POTTS MODELS 
ABOVE THE TRANSIT ION TEMPERATURE 

We consider now the q-state Potts model in 7/d, which is defined by 
spins ax ~ { 1 ..... q} and interaction 

~.t(a)=S--J(6(ax, ay)-l) if A={x,y} withx ,  ynea res tne ighbors  

to otherwise (4.1) 

and suppose that J >  0. Here 6(ax, ay) equals 1 if ax = ay and 0 otherwise. 
To simplify the notation, we incorporate in the following the coupling J 
into the inverse temperature fl [i.e., we put J =  1 in (4.1)]. Below we shall 
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also refer to the corresponding model with a field in the 1-direction. By 
that we mean the addition of interaction terms h,.tS(ax, 1 ) at each x ~ Z a. 

For q = 2  the Potts model becomes (equivalent to) the Ising model. 
On the other hand, for large q very different properties emerge; in par- 
ticular, it is known that for q sufficiently high the Potts model exhibits a 
first-order phase transition <22' 31 with critical inverse temperature 

f l c = d l n q + O ( ~  ) (4.2) 

Our results apply to models with q sufficiently high, and we find it useful 
to present them in three steps of increasing technical complication. 

4.1. Lack of C o m p l e t e  A n a l y t i c i t y  Above T c 

As a warm-up step we shall show the following: 

T h e o r e m  4.1. I fq  is sufficiently high and the spins of the sublattice 
(NT/) d a r e  fixed to be equal to l, the resulting system on the rest of the 
lattice has a first-order phase transition at a temperature Tt. ~ which is 
strictly larger than the Potts critical temperature T,.. 

This theorem can be interpreted as showing that at T<,. u~ one can 
find sequences of volumes [those with "holes" at the sites in (N7/)  d and 
boundary conditions equal to 1 at the holes and 1 or disordered at other 
boundaries ] yielding, in the limit, different one-sided derivatives of the free 
energy density. In particular, this means that the analyticity of the (finite- 
volume) free energies cannot be uniform in the volume and the boundary 
conditions; that is, there is no (strong) complete analyticity. 

We will prove Theorem 4.1 by transcribing the proof by Bricmont, 
Kuroda, and Lebowitz (ref. 3, Theorem 5) of the existence of a first-order 
phase transition for the regular Potts model. Before doing so, however, let 
us briefly show the main ideas of an alternative proof based on the use of 
chessboard estimates. To minimize technicalities, we will restrict ourselves 
here to the case of N = 2. The proof is particulary simple if one uses reflec- 
tion positivity with respect to (hyper)planes passing through the sites of the 
lattice (see ref. 5 for the details of the use of this particular version of 
chessboard estlmates for the Potts model). In accordance with the standard 
use of the method, one has to evaluate the "partition functions" ZP(T) 
corresponding to the patterns obtained on a torus T by disseminating, with 
the help of reflections, particular patterns P on a single elementary (hyper)- 
cube C containing 2 d lattice sites. All then boils down to the verification of 
the bounds claiming that the patterns stemming from completely disordered 
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configurations on C as well as from the configuration with all spins fixed to 
equal 1 are dominating over all remaining patterns. Recalling that the spins 
on the sublattice (27/) a are fixed to equal 1, the first two patterns yield the 
partition functions 

ztlisorder(T) ~(q~Zd_ lV2~e_a/,j)ir I and Z I (T )  = 1 

respectively. For any other pattern, one easily finds 

Z ? ( T )  
max( Zdis~ T), Z I( T) ) ~< e (4.3) 

with sufficiently small e. Indeed, considering for simplicity the two-dimen- 
sional case, we take as an example the pattern stemming from the situation 
where the horizontal bond attached to the chosen site on (2Z)2c~ C is 
ordered and all remaining (three) bonds in C are disordered. It yields the 
pattern with every horizontal line through sites in (27/) 2 ordered (all sites 
at any such line are set to equal 1) and with all remaining bonds disor- 
dered. As a result we get Z V ( T ) ~  (ql/2e-311J/2)lTI and thus (4.3) is satisfied 
for all fl once q is large enough. (Namely, we have here e=q-UI6.)  TO 
show that the transition temperature is asymptotically behaving like 

2 a - 1  1 
fl~ ~ - " - ~ -  ~l l o g q 

one has just to notice that it is exactly this value of fl for which 
zdi*~ = Z ] ( T ) .  Hence, for large q, slightly below fl,. the disordered 
pattern dominates also the ordered one, while slightly above ft,, it is the 
ordered pattern that is dominating. 

Coming back to the proof using the BKL theory (reviewed in Section 
3), we again use the fact that Theorem 4.l refers to a Potts model on 
z/d\(N~-) d with a magnetic field in the 1-direction of strength h,.= 1 if 
x is adjacent to the sublattice (N7/) d and zero otherwise. One can then 
choose the "restricted ensembles" s ~ and s ~ formed, respectively, by the 
disordered and the "all-l" configurations: 

and 

g2~ {a: a,. 4: ay for all x, y nearest neighbors in 7/d\(NT/) a 

and ax4:1 for x adjacent to (NT~) a} (4.4) 

-Ql={1} (4.5) 
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where lx = 1 for all X~z/d\(NT/) d. For each of these ensembles one con- 
structs restricted partition functions; for instance, for any 09 e I2 ~ we take 

Z ~  o9) =_ ~. e -#"A(*I~') 
OA : 0 , 4 0 3  E ~'2 D 

= I{aA ~ Y2A" a ,  o9 ~ s176 I e -a~~ 

_ eSA(,o) e -#n~ (4.6) 

The notation of the last line emphasizes the fact that the term HA(a I o9) = HA ~ 
does not depend on the configurations a and o9 once aAo9 belongs to f2 ~ 
and as a result we can separate the entropy term SA(O9). Notice also that 
even though, strictly speaking, the entropy SA(Og) depends on a particular 
choice of o9~t2 D, this dependence is asymptotically negligible [cf. (4.9) 
below]. On the other hand, 

ZR(A,  1)= 1 (4.7) 

The system with restricted ensembles (4.4) and (4.5) and restricted 
partition functions (4.6) and (4.7) satisfies the requirements (A1)-(A5) of 
ref. 3 just as the usual Potts model does (pp. 522-524 of ref. 3). In par- 
ticular, the Peierls condition holds with 

1 
e -~ oc - (4.8) 

q 

and the symmetry-breaking parameter is f l - f l o ,  where flo is the approx- 
imate coexistence temperature obtained via restricted ensembles. (Hence, 
1/q plays here the role that the temperature plays in the usual Pirogov- 
Sinai theory, while the temperature plays the role of a field.) By the BKL 
extension of Pirogov-Sinai theory, we conclude that there is a temperature 
where the disordered and "all-l" phases coexist. Moreover, by (3.7) and 
(4.8), we have that, up to corrections of order l/q, the transition tem- 
perature is determined by the equality of the restricted free energy densities, 
that is, by the relation 

lim SA(O9) = lim f lH]  (4.9) 
A P zd\(NZ) d IAI A ,- z'\~Nzl' 

The limiting value of the left-hand side in (4.9) actually does not depend 
on a particular choice of o9 ~ I2 D. To construct a disordered configuration, 
the number of choices per site is at least q - 2 d  (assuming all the neigh- 
boring spins have been chosen) and at most q. Hence, 

$4(~ )  = IAI [ln q +  O(1/q)] (4.10) 

822/79/5-6-14 
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On the other hand, 

H.~ = [A[ d(1 + Nal~_ I ) +  O([OA[) (4.11) 

where the term d [A[/(N a -  1) is due to the interaction between spins in A 
and spins on the decimated sublattice 77a\(NZ) a. From (4.9)-(4.11) we get 

c N a d 

which, for large q, is smaller by a factor (N d -  1 )IN d than the Potts inverse 
critical temperature (4.2). 

4.2. N o n - G i b b s i a n n e s s  for  a S e q u e n c e  of T e m p e r a t u r e s  
A b o v e  T c 

Theorem 4.1 amounts to proving what in ref. 30 (see, e.g., p. 990) was 
referred to as Step 1 of the proof of non-Gibbsianness (more precisely, 
nonquasilocality) of the renormalized measure. Such a version of Step 1, 
however, cannot be extended to a full proof of non-Gibbsianness because 
o)'sp~cia ~ is a "maximal" block-spin configuration, and hence there is no 
way to select the different (internal-spin) pure phases just via block-spin 
boundary configurations (that is, Step 2 fails). This type of difficulty is 
already present in other expected examples of non-Gibbsianness proposed 
in the literature (see discussion on pp. 1006-1007 of ref. 30). 

To circumvent this problem, one must prove the analogue of Theorem 
4.1 but for decimated spins fixed in some nonuniform configuration. This 
is easily accomplished: take a periodic configuration in ~_a\(N7/)d with a 
fraction f <  1/2 of spins chosen to equal 2 and the rest to equal 1. The same 
arguments as in the previous section apply, except that (4.11 ) is generalized 
to 

I _ ( 1 - -2f '~  HA--IAI d 1 +-~-2--f_l)+O(lOAI) (4.13) 

hence the coexistence between the "all-1" and disordered phases takes place 
at an inverse temperature 

,. N a _ 2 f d l n q + O  (4.14) 

As a result, we now have two phases that can be selected via decimated- 
spin boundary conditions: if such spins are chosen to be 1, then the "all-l" 
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phase is singled out; and any choice disfavoring it, for instance, boundary- 
decimated spins chosen equal to 3, selects the disordered phase (Step 2 of 
ref. 30). The argument can be completed as for decimation of Ising spins 
(Step 3 in ref. 30) to prove the discontinuity of the decimated conditional 
probabilities at the inverse temperatures fl(c N'f) <tic. We notice that for 
fixed N (decimation scheme), these inverse temperatures range from fl~N)of 
the previous section (for f = 0 )  and the Potts model tic given in (4.2) (for 
f =  1/2). As discussed in the previous section, our proof of non-Gibbsian- 
ness does not apply for f =  0. It does, however, apply at f =  1/2, where at 
the corresponding critical temperature there are three coexisting phases: 
"all-l ' ,  "all-2", and disordered. 

On the other hand, the term O(1/q) in (4.14) is not uniform in the 
period of the decimated configuration chosen. In fact, a closer look at the 
proof of Bricmont, Kuroda, and Lebowitz reveals that the larger the period, 
the larger the minimal value of q needed. Hence, for each fixed q (and N), 
there is only a finite set of qualifying fractions f ,  that is, the argument yields 
only a finite sequence of critical inverse temperatures. 

We summarize the results of this section: 

Theorem 4.2. For each dimension d~>2 and each decimation of 
period N there exists a qo such that for each q > qo there exists a finite 
sequence of temperatures { TtN'r(q))~c ~, f (q )  taking finitely many values in 
O n ( 0 ,  1/2], larger than the Potts critical temperature, for which the 
measure arising by decimation of the q-Potts model is not consistent with 
any quasilocal specification; in particular, it is not Gibbsian. 

4.3. Non-Gibbs ianness  for  an Interval  of T e m p e r a t u r e s  
Above T c (d~>3)  

The limitations of the method of the previous section (finite sequence 
of particular temperatures) can be overcome by choosing the decimated 
spins in a random fashion, for instance, 2 with probability f and 1 other- 
wise. By using a random version of Pirogov-Sinai due to Zahradnik (32) 
we can then prove the analogue of Theorem 4.2 for a whole interval of 
temperatures above To. Zahradnik's proof of the existence of coexisting 
phases for random systems only applies for small disorder ( f  small) and 
dimensions d/> 3. 

This part" of the argument is technically complicated, but is essentially 
identical to the one given in ref. 30, pp. 1012-1013, for the Ising model, 
except that for Potts models 1/q plays the role of the temperature in low- 
temperature Ising models and the temperature plays the role of the 
magnetic field. We skip the details and content ourselves with stating the 
conclusions. 
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Theorem 4.3. For each dimension d~>3 and each decimation 
period N there exists a qo such that for each q > qo there exists a non-empty 
interval of temperatures (T~, T(q)) where the measure arising from the 
decimation of the q-Potts model is not consistent with any quasilocal 
specification; in particular, it is not Gibbsian. The temperatures T(q) 
increase with q. 

5. C O N C L U S I O N S  A N D  FINAL C O M M E N T S  

We have shown examples of renormalization transformations 
exhibiting pathologies deep inside the one-phase region and (for the first 
time) within the high-temperature phase. These examples suggest that the 
occurrence of these types of pathologies is a rather robust phenomenon. 
It is still not clear, however, what the practical consequences of these 
pathologies are. 

A natural question is the size of the set of "pathological" configura- 
tions (.Otspecial at which some finite-volume conditional probability is non- 
quasilocal (discontinuous). In the case of the majority rule acting on the 
Ising model in a strong field, this set of pathological configurations is of 
measure zero with respect to the (unique) Ising Gibbs state. This follows 
from the results of ref. 8. The same is true for the case of block averaging 
in a field (analyzed in ref. 30, p. 1014). This raises the possibility of restor- 
ing a weak form of Gibbsianness defined only almost surely/l '  23, 25, 7, 181 

For the high-temperature pathologies of the decimated Potts models, 
we expect them to disappear if the decimation transformation is repeated 
sufficiently many times. Alternatively, for any temperature above Tc the 
pathologies should be absent if the decimation is taken with linear period 
N large enough. This expectation is based on similar results obtained by 
Martinelli and Olivieri ~261 for the Ising model in nonzero field (which is the 
analogue of T > T c for the Potts-model transition). On the other hand, for 
any fixed N our Theorem 4.3 implies that for q large enough every open 
interval around the transition temperature T c includes (a whole subinterval 
of) temperatures where the decimation transformation produces non- 
Gibbsianness. This is to be contrasted with some results ~21" L 3~ suggesting 
an opposite conclusion for neighborhoods of the critical temperature of the 
Ising model. Although the arguments presented in these works are not 
completely rigorous--they are based on numerical studies of a small 
number of decimated configurations--one may indeed expect differences 
between the cases for which there is a continuous phase transition at T c 
(low-q Potts models) and the cases where the phase transition at Tc is of 
first order (the high-q Potts models analyzed here). 
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